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ABSTRACT. The even-grade 3D Euclidean geometric algebra G +
3,0,0 provides a valuable device

to perform rotations of three-dimensional vectors, by means of unit quaternions, which has been
called a rotor. The aim of this paper is to present a theoretical study with the use of quaternion
rotors replacing the homogeneous-orthogonal-matrix-product structure of the Branch-and-Prune
algorithm when tackling the so-called Discretizable Molecular Distance Geometry Problem with
exact distances, a subclass of distance geometry problems, which determines structures in Rd

only subjected to exact-distance and chirality constraints. The proposed idea shows to be pro-
ductive by reducing around a half of the number of numerical operations to find a solution and
by demanding less space of storage.

1. INTRODUCTION

Quaternions are known as an efficient tool to rotate 3D vectors. Such discussion of the Hamilton
algebra [11, 12] started with Arthur Cayley around 1855 [2] and he was followed by Clifford,
Klein, Hurwitz, Hathaway and others [6]. What comes next is based on [2, 5, 8, 14, 15].

A quaternion is a hyper-complex number q = q0 +qv ∈H, where the scalar part q0 is real and
qv = q1i+ q2j+ q3k is the complex vector part [8]. If the scalar part is null, such number
is called a pure quaternion whose subset is denoted by H0. It was already proved that H is
isomorphic to R4 and that the subset H0 is isomorphic to R3, which is fundamental to the
use of quaternions for rotations of 3D vectors. Furthermore, the conjugate of q is defined as
q∗ = q0−qv ∈H.

H is a non-commutative algebra with the usual addition and the multiplication defined by the
equations i2 = j2 = k2 = ijk = −1, jk = i = −kj, ki = j = −ik and ij = k = −ji. Therefore,
given two quaternions p = p0 +pv and q = q0 +qv, the latter equations gives

(1) pq = (p0q0−pv ·qv)+(p0qv +q0pv +pv×qv),

which demands 28 numerical operations to be performed.

The norm of q is defined by Nq = qq∗ = q∗q. We call q a unit quaternion when Nq = 1.

Cayley, then, noticed that the mapping in R4 given by p 7−→ qpq∗, with q ∈ H, represents a
four-dimensional rotation, taking advantage of such isomorfism R4 ∼H [5].

Now, in Geometric Algebra (geometric approach of Clifford Algebra [3] pionereed by D.
Hestenes [13]), a rotor in the 3D Euclidean space is an even-grade element

(2) Rϕ,r̂ = e−ϕ r̂I = cos(ϕ)− sin(ϕ)r̂I (polar representation)

of the 3D Euclidean algebra G3,0,0 which rotates vectors in 2ϕ about the axis spanned by dual
of the unit vector r̂ by means of the mapping v 7→ Rϕ,r̂vR̃ϕ,r̂, where R̃ϕ,r̂ is the reversal of Rϕ,r̂
and I = e1e2e3 is the pseudoscalar of G3,0,0, where {e1,e2,e3} is the canonical base of R3. [8].
Moreover, rotors define their own algebraic structure called Rotor Algebra, which is denoted
by G+

3,0,0 and consists of a subalgebra of G3,0,0.
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Next proposition states that unit quaternions from H can be binunivocally identified with rotors
in G+

3,0,0 through the relations i↔−e1I, j↔−e2I and k↔−e3I. We show no proof, as it is
fully based on [5, 8, 15].

Proposition 1. The unit quaternion q = q0+qv = cos
(

θ

2

)
+ sin

(
θ

2

)
r̂ can be identified with

the rotor R = R θ

2 ,r̂
∈ G+

3,0,0, which rotates vectors around the subspace spanned by the unit
vector r̂ about the angle θ in the right-hand orientation. The reverse is given by the conjugate
quaternion in this case, that is, R̃ = R̃−θ ,r = e

θ

2 r̂I . Moreover, the result of rotating v by R can
be associated with a linear combination in a local base {v,qv,qv×v} as

(3) RvR̃↔ (q2
0−qv ·qv)v+2(qv ·v)qv +2q0(qv×v).

It is easy to see, by Equation (3), that R demands 32 numerical operations to rotate v.

In this work, we use such rotors to implement the branching device of the so-caled Branch-
and-Prune (BP) algorithm with less numerical operations than the usual homogeneous rotation
matrix approach when exploiting the search space of solutions for the Discretizable Molecular
Distance Geometry Problem (DMDGP).

It is organized as follows. In Section 2, we motivate the use of the DMDGP in the modelling of
a protein-structure-determination problem and discuss its definition using graph theory. Section
3 focuses on the Branch-and-Prune algorithm and how it takes advantages of the combinatorial
approach of DMDGP by using a product of matrices. In Section 4, we present the original
contribution of this paper which consists of using rotors of Quaternion Geometric Algebra in
the kernel of BP instead of matrices. Comparison between classical and quaternion approaches
are discussed in Section 5. Finally, Section 6 concludes the paper and present some directions
for future works.

2. THE DISCRETIZABLE MOLECULAR DISTANCE GEOMETRY PROBLEM

Proteins consist of chains of amino acids, which are chemically bound forming a larger mole-
cule. The structure of each amino acid is given by atoms of hydrogen, nitrogen, carbon, oxygen
and a residue, which varies from one to another and specifies the aminoacid uniquely - the side
chain. It can be represented by the graph G = (V,E) in Figure 1 (a), where V is the set of
atoms (vertices of the graph) and E is the set of available bonds between the atoms (edges of
the graph), and GSC is a subgraph of G which represents the side chain.

A widely important problem in structural and computational Biology is the calculation of the
three-dimensional structure of a protein, which gives lots of information about its functions. For
this purpose, some interatomic-distance and chirality data can be provided by Ramachandran
peptide-unit-mean data [24] or even by physical-chemical experiments such as cristallography
and Nuclear Magnetic Resonance (RMN) [7, 25, 28]. Such data can be used to model an
inverse problem in order to determine protein tridimensional structure by removing all the side
chains and considering only the backbone of the protein, represented by the graph GPB with a
hand-crafted-virtual order for the atoms Figure 1 (b) [17].

We, then, proceed to formalize the problem. Given an integer K > 0 and a simple undirected
graph G = (V,E) whose edges are weighted by an distance function d : E −→R+, the Distance
Geometry Problem (DGP) with exact distances is a decision problem which asks if there exists
or not an embedding x of V in RK such that it does not violate the edge-weight constraints, i.e.,

(4) ‖x(u)−x(v)‖= d({u,v}), ∀{u,v} ∈ E,
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FIGURE 1. (a) A basic graph structure of an aminoacid. (b) A hand-crafted-
virtual order of protein backbone. [17]

where ‖·‖ is the Euclidean norm. E indicates which exact distances between pairs of objects
(represented by the vertices in V ) are available and that are given by the edge-weighting func-
tion d. A solution x to the DGP is called a realization and the search space of this problem is
continuous. From here on, we adopt the short notation du,v for d({u,v}) and xv for x(v).

The Molecular Distance Geometry Problem (MDGP) with exact distances is the 3-dimensional
DGP and such name is inspired in the pioneer work of Crippen and Havel [4] which deals with
such problem to find tridimensional conformations for molecules by using distances among
atoms and chirality information.

Under particular assumptions, the MDGP can be discretized such that the search space assumes
a combinatorial fashion which can be represented by a binary tree. It is strongly based on the
existence of a vertex total order (≤) in V , whose position of each vertex in the order is named
its rank, which gives us a particular MDGP problem, object of our interest in this paper. As the
rank identification is injective, we will abuse on denoting the vertex u with rank i by “vertex i”
and accept all the implications of this.

The Discretizable Molecular Distance Geometry Problem (DMDGP) is a MDGP with a vertex
order such that

(1) (discretization)
for every pair of vertices i, j ∈V with 1≤ |i− j| ≤ 3, we have {i, j} ∈ E and

(2) (non-collinearity)
the distance values among each triplet of consecutive vertices i− 2, i− 1 and i in the
order satisfy the strict triangular inequalities

di−2,i < di−2,i−1 +di−1,i,

for all i≥ 3.

Assumption (1) ensures that the first three vertices in the order induce a 3-clique and guarantees
that, for every i≥ 4, the set {i−3, i−2, i−1, i} ⊂V induces a 4-clique. It means that a set of
feasible positions for vertex i, w.r.t. the considered distances, lie in the intersection I of three
spheres S1,S2 and S3 with centers in the positions of i−3, i−2 and i−1 and radii di−3,i,di−2,i
and di−1,i, respectively, which can have zero, one or two positions (discretization) [16]. Liberti
et al. [19] studies such intersection and guarantees that it has either no point or two points,
assertion which occurs with probability 1, as the probability of |I| = 1 is 0 (zero Lebesgue
measure). Assumption (2), in turn, ensures that collinearity of the three centers does not hold
and, therefore, it is not possible to have infinitely many points in the intersection.

Finally, the search space for solutions is designed as a binary tree. The set of edges can be
partioned into two disjoint sets E = Ed ∪Ep: Ed has the discretization edges and is always
non-empty by Assumption (1) and Ep has the pruning edges which can be empty and whose
weights will be used by the BP algorithm to prune away the infeasible positions determined by
the discretization edges [10, 19, 16]. This dynamics guarantees that the tree doesn not grow
too much and what makes efficient a depth-first search [20, 23]. After removing all possible,
but infeasible, positions, each path from the root node to the leaf node is a solution for the
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DMDGP [16]. Moreover, there are vertices which are called symmetry vertices that makes
possible to transform one solution to another by performing partial reflections on such vertices
[20, 23]. Thus, it is enough to determine one solution only. And, the number of solutions
is deterministically known a priori by 2n−|S|−3, where n = |V | and S is the set of symmetry
vertices which has, at least, the fourth one always [10, 16].

3. CLASSICAL BP ALGORITHM WITH ROTATION MATRICES

Lavor et al. [16] designed a three-stage combinatorial algorithm which solves the DMDGP by
performing a depth-first search in a binary tree, which is called Branch-and-Prune (BP). Such
tree is named Solution Tree and turns out to be the output of BP.

The input data is a DMDGP instance G = (V,E,d) whose vertices are numbered from 1 to n,
where n = |V |. Such distances can provide a special coordinate set for all the vertices which
is called internal molecular coordinate set and that consists of triples of bond lenghts, bond
angles and torsion angles (see Figure 2), widely used in Molecular Geometry [9, 21, 27].

For each vertex i> 2, the bond angle θi−2,i consists on the angle between the bonds {i−2, i−1}
and {i−1, i}. It can be calculated using the regular cosine law in constant time by

(5) θi−2,i = cos−1

(
d2

i−2,i−1 +d2
i−i,i−d2

i−2,i

2di−2,i−1di−1,i

)
.

Also, the torsion angle ωi−3,i is defined as the dihedral angle bewteen the planes πi−3,i−1 and
πi−2,i, which are respectively and uniquely defined by the positions of the vertices i−3, i−2, i−
1 and i−2, i−1, i. It can also be computed in constant time, now using the dihedral cosine law
[1, 18], by

(6) ωi−3,i = cos−1

 2d2
i−2,i−1

(
d2

i−3,i−2 +d2
i−2,i−d2

i−3,i

)
− (di−3,i−2,i−1)(di−2,i−1,i)√(

4d2
i−3,i−2d2

i−2,i−1−d2
i−3,i−2,i−1

)(
4d2

i−2,i−1d2
i−1,i−d2

i−2,i−1,i

)
 ,

where

di−3,i−2,i−1 = d2
i−3,i−2 +d2

i−2,i−1−d2
i−3,i−1 and

di−2,i−1,i = d2
i−2,i−1 +d2

i−i,i−d2
i−2,i.

All distance values involved in Equations 5 and 6 are available by the DMDGP definition.

i−3

i−2

i−1

i

di−2,i−3

di−1,i−2

di,i−1

θi−1,i−3

θi,i−2

ωi−3,i

FIGURE 2. Fundamental quatruplet of DMDGP and internal coordinates.

The algorithm is initiallized by positioning the first three vertices in order to fix the base plane
π1,3 [27] (see Figure 3). Vertex 1 is considered as the origin of a local Cartesian frame x1y1z1
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FIGURE 3. Initialization of BP: placing the base plane.

such that vertex 2 is defined in the negative x1-axis and vertex 3 lies in the first or second
quadrant of the x1y1-plane. Vertex 2 is also the origin of a coordinate system x2y2z2 whose
negative x2-axis passes through vertex 1 and, again, vertex 3 lies in the first or second quadrant
of the x2y2-plane. At last, vertex 3 is the origin of a coordinate frame x3y3z3, whose negative
x3-axis passes through vertex 2 and vertex 1 lies on the third or fourth quadrant of x3y3-plane.

So, every conformation x : V → R3 for G is based in this plane, starting from the origin
of x1y1z1 with x1 =

(
0 0 0

)T . Such origin can be mapped into the second position with
three transformations from the first frame into the x2y2z2 system: a translation by the vector
t2 =

(
d1,2 0 0

)T , a rotation in θ = π around the axis spanned by the canonical vector k and
a rotation in ω = π about the axis spanned by the canonical vector i, i.e., x2 =

(
−d1,2 0 0

)T .
Analogously, the origin of x1y1z1 can be mapped into x2y2z2 by means of the latter transfor-
mation and, then, into x3y3z3 by a translation with the vector t3 =

(
d2,3 0 0

)T , a rotation in
θ = π−θ1,3 around the axis spanned by k and a rotation in ω = 0 around the axis spanned by
i, which determines the position x3 =

(
−d1,2 +d2,3 cos(θ1,3) d2,3 sin(θ1,3) 0

)T .

From the fourth on, we have the branching stage: given a vertex i, the discretization assumption
guarantees that there are two possibilities x1

i and x2
i for its position, as we previsouly saw, that

lie in the intersection of three spheres with centers in the positions of i−3, i−2 and i−1 and
radii di−3,i,di−2,i and di−1,i, respectively. They are symmetric by the plane determined by the
xi−3,xi−2 and xi−1: one is generated by a rotation by ω = ωi−3,i and the other by a rotation by
ω =−ωi−3,i, both about the axis span{i}.
Both positions can be determined by solving the quadratic system

‖xi−xi−3‖2 = d2
i−3,i(7)

‖xi−xi−2‖2 = d2
i−2,i(8)

‖xi−xi−1‖2 = d2
i−1,i(9)

Some mentions about solutions to this can be found in [19].

Lavor et al. [16], on the other hand, took advantage in the recursive structure of the DMDGP to
find both positions by a composition of a translation, a planar rotation and a spatial rotation, as
some authors had already done for other applications [9, 27]. After finding one of the solutions
from the pair, the other can be found just by changing the signs for the torsion angles [16].

Below, we describe in details such recursive transformations using a product of matrices. It
will be of great importance when defining the quaternion rotors, as we need to know precisely
the angle and the axis that the rotation will occur.
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For each i ≥ 4, it is defined a xiyizi frame such that vertex i+1 lies in the negative xi-axis and
i+2 lies in the the third or fourth quadrant of the xiyi-plane.

For all the cases, we can transform a position xi−1 in the frame xi−1yi−1zi−1 to another position
xi in the frame xiyizi by a translation by the vector ti =

[
di−1,i 0 0

]T , a rotation in θ =
π−θi−2,i about span{k} and a rotation in ω = ωi−3,i about span{i}. Thus,

(10) xi =

[
xi
yi
zi

]
=

[
1 0 0
0 cos(ω) −sin(ω)
0 sin(ω) cos(ω)

][
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]([
xi−1
yi−1
zi−1

]
+

[
di−1,i

0
0

])
Using the fact that sin(π − θi−2,i) = sin(θi−2,i) and cos(π − θi−2,i) = −cos(θi−2,i) and the
convenient homogeneous representation of a translation as a matrix [27], the position xi as
the result of Equation (10) can be represented in the homogeneous space as a product of two
orthogonal 4× 4 matrices Ei and Pi and a homogenous-translational matrix Ti by the position
of xi−1 in the homogeneous space as

(11) xh
i =


xi
yi
zi
1

= EiPiTi


xi−1
yi−1
zi−1

1

= EiPiTixh
i−1,

where xh
i−1 =

(
xT

i−1 1
)T , xh

i =
(
xT

i 1
)T ,

Ei


1 0 0 0
0 cos(ωi−3,i) −sin(ωi−3,i) 0
0 sin(ωi−3,i) cos(ωi−3,i) 0
0 0 0 1

, Pi =


−cos(θi−2,i) −sin(θi−2,i) 0 0

sin(θi−2,i) −cos(θi−2,i) 0 0
0 0 1 0
0 0 0 1

 and Ti =


1 0 0 di−1,i
0 1 0 0
0 0 1 0
0 0 0 1

.

After the products, we then get to the widely known matrix transformation [9, 16, 21, 26, 27]

(12) xh
i = Bixh

i−1,

which is given byxi
yi
zi
1

=

 −cos(θi−2,i) −sin(θi−2,i) 0 −di−1,i cos(θi−2,i)
sin(θi−2,i)cos(ωi−3,i) −cos(θi−2,i)cos(ωi−3,i) −sin(ωi−3,i) di−1,i sin(θi−2,i)cos(ωi−3,i)
sin(θi−2,i)sin(ωi−3,i) −cos(θi−2,i)sin(ωi−3,i) cos(ωi−3,i) di−1,i sin(θi−2,i)sin(ωi−3,i)

0 0 0 1

xi−1
yi−1
zi−1

1


This product is efficient to find both possibilities for the position of a vertex, as we can get the
other position from the same matrix structure just by turning the sign of the sine, since

(13) sin(−ωi−3,i) =−sin(ωi−3,i).

So, there is a biunivocal correspondence between the set of positions for all possible depth-first
paths in the binary tree and the set of all possible sequences of internal coordinates, ordered
following the DMDGP ordered set V . That is, as in [16, 27], for each choice of sequence of
internal coordinates from 1 to n, one can position vertex i uniquely, by transforming the origin
of the x1y1z1 frame into a point in the xiyizi frame through the product

(14) xh
i = B1B2B3B4 · · ·Bi−1Bi


0
0
0
1

 .
For i = 1,2,3, we have no branchings. So, it is easy to determine the first three transformation
matrices are fixed: B1 is the 4×4 identity matrix,

B2 =


−1 0 0−d1,2
0 1 0 0
0 0 −1 0
0 0 0 1

 and B3 =


−cos(θ1,3) −sin(θ1,3) 0 −d2,3 cos(θ1,3)

sin(θ1,3) −cos(θ1,3) 0 d2,3 sin(θ1,3)
0 0 1 0
0 0 0 1

.
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Finally, after positioning a vertex i in xi, we ought to test its feasibility according to all distance
values involving such vertex. This is the third stage called pruning. When xi is found, a pruning
device is implemented in order to check feasibility.

Many different kinds of pruning devices can be developed and used at this stage [22], but a very
efficient one is the Direct Distance Feasibility (DDF) check.

Alg. 1 is an outline of the BP algorithm, where v∈V is the current vertex one wants to position,
n = |V | and d represents the weights for the edges.

Algorithm 1 The BP algorithm

1: BP(v,n,d)
2: compute x′v;
3: if (x′v is feasible) then
4: if (v = n) then
5: let nsols = nsols+1;
6: else
7: BP(v+1,n,d);
8: end if
9: end if

10: compute x′′v ;
11: if (x′′v is feasible) then
12: if (v = n) then
13: let nsols = nsols+1;
14: else
15: BP(v+1,n,d);
16: end if
17: end if

If it runs until termination, all possible realizations of G are found. However, it can be stopped
after the first leaf node when level n is reached. This way, only one realization of G is deter-
mined, which is called BP-one.

4. BP ALGORITHM WITH QUATERNION GEOMETRIC ALGEBRA

Instead of using homogenous 4× 4 orthogonal matrices to perform rotations of 3D vectors
when transform a vector from xi−1yi−1zi−1 frame into another in xiyizi frame, one can make use
of convenient unit quaternions at each step of BP.

As we know the possible internal coordinates (di,θi,ωi) for each vertex i ∈ V , we define the
spatial and planar rotational unit quaternions, respectively, as

qε
i = cos

(
ωi

2

)
+ sin

(
ωi

2

)
k↔ e−

ωi
2 kI and qπ

i = cos
(

π−θi

2

)
+ sin

(
π−θi

2

)
i↔ e−

π−θi
2 iI.

Then, Equation (11) can be translated into

(15) xi = (qε
i qπ

i )(xi−1 + ti)(qε
i qπ

i )
∗
.

We can simplify such transformation by making

(16) qi = qε
i qπ

i = sin
(

θi

2

)
cos
(

ωi

2

)
+ sin

(
θi

2

)
sin
(

ωi

2

)
i− cos

(
θi

2

)
sin
(

ωi

2

)
j+ cos

(
θi

2

)
cos
(

ωi

2

)
k.

Thus, Equation (15) can be written as

(17) xi = qi (xi−1 + ti)q∗i .

As the internal coordinates for the first three vertices are set as (0,0,0),(d1,2,0,π) and (d2,3,θ1,3,0),
we then have
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q1 = 1, q2 =−j and q3 = sin
(

θ1,3

2

)
+ cos

(
θ1,3

2

)
k.

Therefore, Equation (14) can be written in quaternion terms as

(18) xi = q1
(
q2
(
q3
(
· · ·
(
qi−1 (qi(e+ ti)q∗i + ti−1)q∗i−1 + ti−2

)
· · ·+ t3

)
q∗3 + t2

)
q∗2 + t1

)
q∗1,

where e =
(
0 0 0

)T . If we list each one and perform the distributions, we can notice the
recursion calling the last position which is already determined as part of the solution, that is,

x1 = q1(e+ t1)q1∗ = q1t1q∗1 = e,

x2 = q1(q2(e+ t2)q∗2 + t1)q∗1 = (q1q2) t2 (q1q2)
∗+q1t1q∗1 = (q1q2) t2 (q1q2)

∗+x1,

x3 = q1(q2(q3(e+ t3)q∗3 + t2)q∗2 + t1)q∗1 = (q1q2q3) t3 (q1q2q3)
∗+x2,

...

xi = (q1q2 . . .qi)ti(q1q2 . . .qi)
∗+xi−1,

...

xn = (q1q2 . . .qn)tn(q1q2 . . .qn)
∗+xn−1.

Thus, the general step of BP, from Equation (14), can be stated using quaternion rotors as

(19) xi = (q1q2 . . .qi)ti(q1q2 . . .qi)
∗+xi−1, i = 2, . . . ,n.

If we need to backtrack and get the second position, we just change the sign of the sine of the
torsion angle (Equation (13)) and the new position is given by R̃xR, i.e.,

(20) xi = (q1q2 . . .q∗i )ti(q1q2 . . .q∗i )
∗+xi−1, i = 2, . . . ,n.

5. COMPARISONS: ORTHOGONAL MATRIX ALGEBRA × QUATERNION GA FOR BP

This section brings a comparison between homogeneous rotation matrix product and quaternion
rotor product approaches.

For the first (Equation(14)), to find the x1, we need 28 operations to xh
1 = B1

[
0 0 0 1

]T .
Then, at each step i≥ 2, having already positioned xi−1, we make the product

(21) xh
i = Qi−1Bi

[
0 0 0 1

]T
,

where Qi−1 = B1B2B3B4 · · ·Bi−1. To do so, it is necessary to perform 112 operations to build
the matrix Qi−1Bi and more 28 operations to make the product of the resulting matrix and the
vector

[
et 1

]T . In summary, to build a solution for an instance with n vertices, we need

(22) OM(n) = 140n−112

operations.

Yet, for the second approach (Equation(19)), we need 32 operations to find the first position
by x1 = q1t1q∗1. After that, at each step i ≥ 2, having already positioned xi−1, we make the
transformation

(23) xi = (qρ

i−1qi)ti(q
ρ

i−1qi)
∗+xi−1,

where qρ

i−1 = q1q2 . . .qi−1. To do so, we need 28 operations to find the composed quaternion
qρ

i−1qi, more 32 operations to rotate ti by (qρ

i−1qi)ti(q
ρ

i−1qi)
∗ and more 3 operations to sum with

the previous position already determined. As a result, to build the same solution as with the
matrix product with n vertices, we need

(24) Oq(n) = 65n−30

numerical operations.
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We used ten instance sizes to analyze the numerical counting of operations for both Matrices
and Quaternions. The sizes are displayed in Table 1 and the numerical operation numbers and
ratio between them are, respectively, plotted in Figure 4(i) and Figure 4(ii).

TABLE 1. Instance Size Table

Instance 1 2 3 4 5 6 7 8 9 10
n 1 10 100 500 700 1000 5000 7000 10000 20000

FIGURE 4. (i) In red, the values for OM(n) and, in yellow, the values for Oq(n).
(ii) In blue, the ratio between OM(n) and Oq(n)

We can see that as the size of the instance grows, the difference between the number of opera-
tions of both approaches grows considerably. Such number for the structure with matrices (red
line in Figure 4(i)) increases around twice each time more than the number of operations to
make the same determination with quaternions (yellow line in Figure 4(i)). The second plotted

curve (Figure 4 (ii)) shows the ratio
OM(n)
Oq(n)

, which is stable around two since when dealing

with a few number of vertices, validating that.

At last, each matrix needs 16 positions and each quaternion need 4 ones. That is, additionally
to make less operations, it needs less space to store the internal-coordinate data.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the transformation device in the kernel of the Branch-and-
Prune algorithm, in order to solve a DMDGP, can be made using either homogeneous rotation-
translation matrix product or a product of rotors in the Geometric Algebra of Quaternions,
which is the aim of this work.

One can see that using quaternions is not only a good choice in terms of saving memory, but
also in terms of saving numerical operations to perform the rigid movements, when compared
to the classical orthogonal matrix approach. It possibly, then, can prevent us from numerical
round-off errors better than the first approach. The latter numerical experiments was not studied
in this theoretical work, standing for a future step.

Some more future challenges are to deal with numerical tests using real protein instances, for
showing advantages and drawbacks in setting quaternion approach as the main one. To handle
imprecise experimental data (which can be provided by crystallography or NMR) [17], Alves
et al. have used conformal Geometric Algebra in [1]. Therefore, we also want to evaluate the
possibilities of using the idea presented in this paper for doing so, as we chose to work only
with precise distance values.
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[10] F. Fidalgo, D. S. Gonçalves, C. Lavor, L. Liberti and A. Mucherino, A symmetry-based splitting strategy
for discretizable distance geometry problem, Journ. Glob. Optm. (2018), to appear.

[11] W.R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
[12] W.R. Hamilton, Elements of Quaternions, vol. 1, Longmans, Green and Co., London, 1866.
[13] D. Hestenes, Space-Time Algebra, Gordon and Breach, London, 1966.
[14] B. K. P. Horn, Closed-form solution of absolute orientation using unit quaternions, Journ. Glob. Optm. 56

(2013), 855–871.
[15] J.B. Kuipers, Quaternions and Rotation Sequences: a primer with applications to orbits, aerospáce and
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