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Abstract  This work uses Quaternion Algebra as a tool to improve the resolution of the Multiple Realization
Trees method which solves the Discretizable Molecular Distance Geometry Problem (DMDGP)
by dividing the instances into smaller pieces producing more than one binary tree of realizations.
Quaternion Rotations are used here to merge such trees, saving positions of memory and causing
a decreasing in the number of operations.
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1. Introduction

From known distance values for pairs of atoms in a molecule, it is possible to formulate an
inverse problem called Molecular Distance Geometry Problem (MDGP) [1, 5] which consists
of finding a 3-D conformation for the molecule such that it satisfies the distance constraints.
Such data usually come from chemical knowledge (like atomic bond lengths and bond angles)
combined with a physical experimental method called Nuclear Magnetic Resonance (NMR) [3].
With additional assumptions, Lavor et. al [5] proposed a discrete formulation for a subclass
of the MDGP, which is called Discretizable Molecular Distance Geometry Problem (DMDGP).
In addition, an efficient method was also proposed for solving this problem, the Branch-and-
Prune (BP) algorithm, which generates a binary tree with all possible solutions [5]. To make
this method faster, Nucci et. al [6] proposed another one which uses the BP algorithm more
than once, generating more than one tree, as shown in Section 2. Finally, Section 3 shows how
to use quaternions in order to make the method, proposed by Nucci et. al, even more efficient,
comparing it with the rotation matrix approach.

2. Multiple Realization Trees

Given a molecule M in a backbone-chain shape, with an order < on its set of atoms {1,...,n},
we can split it into an union of intervals in an increasing order like

M =M UMyU...UM;p, (1)
where M; = [aj,b5], a1 =1, by =n, 1 < aj <ajp1 <n,bj—ajp1 >2and j=2,...,k—1.

The whole molecule can be represented as the interval M = [1,n]. For example: let M = [1, 6]
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be a molecule. So, it can be splitted into the union M = M; U My, where M; = [1,4] and
M, = [2,6].

L T~ 9 _— s T~ 4 — g >~ 6

This division motivates what Nucci et. al [6] called as the method of Multiple Realization
Trees (MRT). Before describing it, we give some important definitions. A Valid Realization
of a DMDGP instance M corresponds to a bijective embedding of it in R? which satisfies the
distance constraints, i.e., a three-dimensional conformation for M. A Realization Tree, in our
case, is a binary-tree graph which represents, in a depth-first fashion, all the valid realizations
which solves the DMDGP. A Feasible Branch is the name we give for each of the branches of
a Realization Tree, i. e., each feasible branch represents one embedding of M in R3.

The MRT method applies the BP algorithm in each interval M;, producing k realization
trees 7). We denote by 7' the realization tree which represents all the feasible realizations for
throughout the DMDGP instance M. Back to our example, the BP method provides the trees
T1 and T5, as in the figures below.

Figure 1: Tree 77: 4 levels. Figure 2: Tree 1T5: 5 levels.

It is necessary to merge all the trees following the same order of split (1), aiming to get
realizations of the whole molecule. The procedure is merging each branch from one tree to all
branches from the other, one at a time. We denote the ' branch of a tree T, as T .

In order to produce mergeable trees, one has to assume that two consecutive intervals M,
and My have, at least, three atoms in the intersection [6]. Consider, then, the two consecutive
trees 1}, and T},41 relative to the previously mentioned intervals. As they have three levels of
intersection, we consider the tree T}, to be fixed, calling it Base Tree, and we move the other
tree 1)1, which we name Sliding Tree, towards 7T}, using Euclidean transformations in order
to preserve lenghts and angles. Assume that the last three atoms of the base interval are i, j
and k, respectively ordered, and let T}, ,(z) be the generic notation for the position of the
atom z € {1,2,...,|T; 4|} in the branch y of the binary tree z. Also, if the number of feasible
branches in a tree T is denoted by |T'|, then the final number of feasible realizations of M,
provided by the MRT method, is r, which is defined by the multiplication

r=|T||Ts]...|Tx| < |T.

Three Euclidean transformations are necessary to merge the arbitrary branches 7, ; and
Tp,q- The first one is a translation that makes Tp 1 (i) — 1} 4(7), shown in Figure 2.
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Figure 3: First Euclidean transformation: a translation of both realized branches.

We also want to make T},114(j) — Tpq(j), without losing what we have built with the
translation. Let us denote Ej, = T, 4(j) — Tp,q(i) and Epy1 = Tpi1,4(j) — Tp+1,4(7) and let 6 be
the angle between E, and Ej,1. We apply a plane rotation of ¢ in the branch T},11, as one
can see in Figure 4.
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Figure 4: Second Euclidean transformation: a plane rotation in terms of 6.

Finally, after one translation and one rotation, consider F), = T), ,(k) — 1) ,(j) and Fp1 =
Tpi1,0(k)=Tpy1,.(j). We want to move the sliding branch T}, 1 ¢ such that it satisfies T}, 1 (k) —
Tp,q(k), without moving anything else which has been already transformed previously. We
define the rotation axis, whose attitude L is spanned by T}, ,(j) — Tpq(i), and consider the
plane P, orthogonal to this axis. Let P = I3 — LLT be the matrix that gives the orthogonal
projection to P.
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Then, the projections of F,, and Fj,11 in P are, respectively,
P,=PF, and Pyi1 =PEyy.

Now, let ¢ be the angle between P, and P,.;. Thus, we rotate F,;1 towards F}, in ¢ about
the axis spanned by L, as it is shown in Figure 5. So we do with the remaining structure.
Therefore, both realizations are connected and supposed to respect all original distance and
angle constraints.

TP7Q(j )L

Tp.q(k) Tpq(F)

Figure 5: Third transformation: a spatial rotation in terms of the projected angle .

Following this outline, all the trees are connected and their branches consist of feasible points
that solve the DMDGP. In addition, we remark that all rotations are computed using matrices.

3. Merging Trees with Quaternion Rotations

All general rotations in real 3-D space can be represented by an axis, spanned by a unitary
vector n, and an angle 6. Using this information, one can build the matrix Ry, ¢ which carries
out a general rotation and can be determined by using the matrix form of Rodrigues’ Rotation
Formula [7]

R = I +sin(6)J(n) + (1 — cos())J(n)?, (2)

where J(n) is a skew-symmetric 3 x 3 - matrix generated by the elements of n as

0 —ns3 ng
—nN9 ni 0

Such rotation matrices need 37 arithmetic operations to be determined, according to Equation
(2), and 9 positions of memory to be stored. In addition, it is necessary to use more 15
operations to multiply it for a vector v we want to rotate, totalizing 52 arithmetic operations.

This work aims to propose a theoretical modification on the tools which are used to make ro-
tations on three-dimensional structures in order to decrease the storage space and, consequently,
the number of operations to accelerate this process. Our approach uses the Quaternion Algebra
H [4] to do that.

Consider the unit quaternion ¢ = go + qv, where ¢y € R and q, € R3. It is possible to prove
that there is an unique angle 0 < 6 < 7 such that gy = cos(f) and ||qv|| = sin(#). Then, we
can rewrite ¢ = cos(f) + usin(#), where u = nﬂi_n [4]. The conjugate of ¢ can be written as
q* = cos(0) — usin(f) [4]. Now, the following outcome characterizes a quaternion rotation by
means of a linear operator[4].

Theorem 1 (Quaternion Rotation Operator). For a unit quaternion ¢ = cos(#)+usin(f), the
operator Ry : R? — R?, whose action on the vector v € R? is given by Ry(v) = qvq*, is a
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rotation operator which rotate vectors about the axis spanned by the unit vector u through an
angle 20 in clockwise sense.

Explicitly, the action of R, in a vector v € R? can be derived as the Rodrigues’ Rotation

Formula
Ry(v) = cos(20)v + (1 — cos(20))pu(v) + sin(260)(u x v), (3)

where py(v) = (u- v)u is the orthogonal projection of v in the direction of u.

First of all, one improvement we can realize on the use of quaternions is that it is easier to
encode a rotation in a unit quaternion than in an orthogonal matrix. Morcover, Equation (3)
shows that each quaternion rotation creates a local frame (v,pyu(Vv),u x v) to represent the
rotated vector and, also, gives us a route on how to localize it in the space more easily.

On computational complexity, quaternion rotations require the storage of only four positions
instead of nine, necessary in the use of three-dimensional matrices. In addition, 25 arithmetic
operations are used to compute such rotations, fashioned such as in Equation (3). As we can
see, this number of operations is reasonably less than the one used in the matrix approach.
When considering more than one rotation, it seems to be even more efficient by saving space
and floating-point-arithmetic operations.

Therefore, we apply these ideas as efficient tools in the merging of BP-trees. According to
the MRT procedure described previously, we have to carry out two rigid rotations in the sliding
structure. For each one of them, it is necessary first to determine the cosine of the rotation
angle by using the usual dot product in R3, restricting the domain of the cosine function to the
range [0, 7| in order not to allow it to reach the position determined by the angle 27w — 6 since
both angles have the same cosine value. Moreover, the unitary vector which spans the oriented
rotation axis can be chosen by applying the usual cross product in 3-D Euclidian Space, whose
signal induces the orientation of the rotation, following the so-called Right-Hand Rule. Thus,
the order in the cross product really matters: indeed, the axis for a rotation of a vector x
towards another vector y is spanned by the vector x x y, while the axis for the rotation of y
towards x is spanned by the vector y x x. As they satisfy the relation of anticommutativity
y X X = —(x X y), the direction of the rotation is, therefore, encoded in the sign of the cross
product.

The first rotation is supposed to take E, 1 into E, since they have the same origin. Thus, the
cosine of the angle and the unitary vector which spans the correspondent axis are, respectively,

cos(f) = ABpi1, Bp) o B X Ep (4)
[ Ep1ll [ Epll [ Ep1 % Ep||
Using the parameters developed above, we associate the following quaternion element to such
rotation

go.n = cos($) + nsin(d).

Then, employing the result displayed in Theorem 1, we apply the rotation in the sliding struc-
ture Tpy14

Tp1.4(uw) < Ryy  (Tpr1,e(u)),  for u=2,...,|Tpr14l, (5)

where |11 1| is the number of vertices in this feasible branch of the realization tree Tj41.
Further, assume L = E,/ || By, Fp = Tpqe(k) — Tpq(j) and Fpi1 = Tpr1e(k) — Tpr1.())-
The orthogonal projection matrix, associated to the plane P, is given by M = I3 — LLT, as
we have seen. Then, the projections are given by the vectors P, = MF), and P,11 = MF,44.
Analogously to (4), the second rotation is generated by the parameters
<P p+1s 15 p>

P, P,
cos(p) = ———"— and m= P+l X p

- PP (6)
1Bt [ T3] 1By < By
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After calculating them, we define the associated quaternion to the respective rotation by
Jp.m = cos(5) + msin(%).

Therefore, we rotate the sliding structure, again as in Theorem 1, by making

Tp1.4() = Ry (Tpr14(w)),  for w =3, [Tpi14, (7)

concluding the merging of the two structures T}, ; and T}11 .

There are two rotations in this approach. The first one fixes the first vertex of the sliding
structure and the second one fixes both the first and the second vertices. Then, compounding
both the rotations in only one and applying it in the sliding structure leads us to reach the
same resulting structure. It is reasonably easier and computationally cheaper to compose two
quaternion rotations than multiplying two rotation matrices [4, 2]. Using this, we can save
half of the storage space and carry out less than the half of arithmetic operations for the
transformation of each point.

As a conclusion, using quaternion rotations, instead of matrices, can bring improvements
either about computational time or about simplifying the method. We are in the process of
implementing these ideas in order to illustrate computationally the theoretical improvements.
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